Cooperation across timescales between and Hebbian and homeostatic plasticity
نویسنده
چکیده
We review a body of theoretical and experimental research on the interactions of homeostatic and Hebbian plasticity, starting from a puzzling observation: While homeostasis of synapses found in experiments is slow, homeostasis of synapses in most mathematical models is rapid, or even instantaneous. Even worse, most existing plasticity models cannot maintain stability in simulated networks with the slow homeostatic plasticity reported in experiments. To solve this paradox, we suggest that there are both fast and slow forms of homeostatic plasticity with distinct functional roles. While fast homeostatic control mechanisms interacting with Hebbian plasticity render synaptic plasticity intrinsically stable, slower forms of homeostatic plasticity are important for fine-tuning neural circuits. Taken together we suggest that learning and memory relies on an intricate interplay of diverse plasticity mechanisms on different timescales which jointly ensure stability and plasticity of neural circuits.
منابع مشابه
Hebbian plasticity requires compensatory processes on multiple timescales
We review a body of theoretical and experimental research on Hebbian and homeostatic plasticity, starting from a puzzling observation: while homeostasis of synapses found in experiments is a slow compensatory process, most mathematical models of synaptic plasticity use rapid compensatory processes (RCPs). Even worse, with the slow homeostatic plasticity reported in experiments, simulations of e...
متن کاملThe temporal paradox of Hebbian learning and homeostatic plasticity.
Hebbian plasticity, a synaptic mechanism which detects and amplifies co-activity between neurons, is considered a key ingredient underlying learning and memory in the brain. However, Hebbian plasticity alone is unstable, leading to runaway neuronal activity, and therefore requires stabilization by additional compensatory processes. Traditionally, a diversity of homeostatic plasticity phenomena ...
متن کاملModeling the Dynamic Interaction of Hebbian and Homeostatic Plasticity
Hebbian and homeostatic plasticity together refine neural circuitry, but their interactions are unclear. In most existing models, each form of plasticity directly modifies synaptic strength. Equilibrium is reached when the two are inducing equal and opposite changes. We show that such models cannot reproduce ocular dominance plasticity (ODP) because negative feedback from the slow homeostatic p...
متن کاملHomeostatic plasticity and NMDA receptor trafficking.
Learning, memory and brain development are associated with long-lasting modifications of synapses that are guided by specific patterns of neuronal activity. Such modifications include classical Hebbian plasticities (such as long-term potentiation and long-term depression), which are rapid and synapse-specific, and others, such as synaptic scaling and metaplasticity, that work over longer timesc...
متن کاملDiverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks
Synaptic plasticity, the putative basis of learning and memory formation, manifests in various forms and across different timescales. Here we show that the interaction of Hebbian homosynaptic plasticity with rapid non-Hebbian heterosynaptic plasticity is, when complemented with slower homeostatic changes and consolidation, sufficient for assembly formation and memory recall in a spiking recurre...
متن کامل